Hans Weber¹

Received November 9, 1994

It is proved that the space of all bounded real-valued valuations μ with $\mu(0) = 0$ on a complemented lattice is isomorphic to the space of all real-valued totally additive measures on a suitable complete Boolean algebra.

0. INTRODUCTION

In this paper we establish a natural isomorphism between the space of all bounded real-valued valuations μ with $\mu(0) = 0$ on a complemented lattice L and the space of all real-valued totally additive measures on $C(\tilde{L})$; here \tilde{L} is a suitable completion of a quotient of L and $C(\tilde{L})$ the center of \tilde{L} ; see Theorem 4.3. In particular, this answers in the affirmative the question of P. Pták of whether the space of all positive valuations μ with $\mu(0) = 0$ on an orthomodular lattice is isomorphic to a space of measures on a Boolean algebra.

A result—similar to that of this paper for *valuations*—was obtained in Weber (n.d.-a) for *exhaustive lattice uniformities* on orthomodular lattices: The lattice of all exhaustive lattice uniformities on L is isomorphic to the space of all order continuous FN-topologies on $C(\tilde{L})$. The analogous result can be derived from Avallone and Weber (n.d.) for a complemented modular lattice L. The proof of our main result (Theorem 4.3) is based on the idea which underlies the mentioned theorem from Weber (n.d.-a) for lattice uniformities, the Hahn-decomposition theorem (Section 2), and an extension theorem (Section 3) for valuations.

1. PRELIMINARIES

Throughout let L be a lattice with smallest element 0 and greatest element 1.

¹Dipartimento di Matematica e Informatica, Università degli Studi di Udine, I-33100 Udine, Italy.

We denote by $\Delta := \{(x, x): x \in L\}$ the diagonal of $L \times L$ and by \mathbb{N} and \mathbb{R} the sets of natural and real numbers, respectively.

A valuation on L is a function $\mu: L \to \mathbb{R}$ satisfying

$$\mu(x \lor y) + \mu(x \land y) = \mu(x) + \mu(y) \quad \text{for all} \quad x, y \in L$$

 μ is called *order continuous* (or σ -*order continuous*) if $(\mu(x_{\gamma}))$ converges to $\mu(x)$ whenever (x_{γ}) is, respectively, a monotone net (or a monotone sequence) order-converging to an element $x \in L$. It follows, e.g., from Fleischer and Traynor (1982), Theorem 3, that

$$N(\mu) := \{(x, y) \in L^2: \mu \text{ is constant on } [x \land y, x \lor y]\}$$

is a congruence relation for any valuation $\mu: L \to \mathbb{R}$.

1.1. Proposition. Let $(\mu_{\alpha})_{\alpha \in A}$ be a family of valuations on L and $N = \bigcap_{\alpha \in A} N(\mu_{\alpha})$. Then the quotient $\hat{L} := L/N$ is a modular lattice. Moreover, \hat{L} is relatively complemented if L is complemented.

Proof. \hat{L} is modular by Fleischer and Traynor (1982), Theorem 1, applied to the function $m: L \to \mathbb{R}^A$ defined by $m(x) := (\mu_{\alpha}(x))_{\alpha \in A}$. [Another proof of the modularity of \hat{L} can be obtained by a modification of the second proof of Birkhoff (1984), Theorem X.2, that is near at hand.] Obviously, \hat{L} is complemented. But any complemented modular lattice is relatively complemented by Birkhoff (1984), Theorem I.14.

1.2. Proposition. Let L be complemented and $\mu: L \to \mathbb{R}$ a valuation with $\mu(0) = 0$.

(a) If $\mu(x) \ge 0$ for all $x \in L$, then μ is increasing, hence bounded.

(b) If μ is bounded, then μ is of bounded variation, hence the difference of two increasing valuations.

Proof. For relative complemented lattices with 0 and 1, the assertion is formulated in Exercise 5 on p. 241 of Birkhoff (1984). One can reduce the assertion to the relative complemented case passing to the quotient $\hat{L} := L/N(\mu)$ defining on \hat{L} a valuation $\hat{\mu}$ by $\hat{\mu}(\hat{x}) = \mu(x)$ for $x \in \hat{x} \in \hat{L}$. The quotient \hat{L} is relatively complemented, by Proposition 1.1.

The center C(L) of L is the set of elements of L which have one component 1_1 and the other 0_2 , under some direct factorization $L \simeq L_1 \times L_2$ (Birkhoff, 1984, p. 67; Maeda and Maeda, 1970, p. 18). C(L) is a Boolean sublattice of L (Maeda and Maeda, 1970, (4.15)).

For $\mu: L \to \mathbb{R}$ and $a \in L$, we define $\mu_a: L \to \mathbb{R}$ by $\mu_a(x) := \mu(a \land x)$.

1.3. Proposition. Let $\mu: L \to \mathbb{R}$ be a valuation with $\mu(0) = 0, a \in C(L)$, and a' its unique complement (Maeda and Maeda, 1970, (4.14)). Then μ_a ,

 $\mu_{a'}$ are valuations and $\mu = \mu_a + \mu_{a'}$; moreover, μ_a and $\mu_{a'}$ are, respectively, bounded or σ -order continuous or order continuous if μ is.

Proof. We may assume that $L = L_1 \times L_2$, a = (1, 0), a' = (0, 1). The assertion follows from the fact that then $\mu_a = \mu \circ p_1$ and $\mu_{a'} = \mu \circ p_2$, where p_1 and p_2 denote the projections from $L_1 \times L_2$ onto $L_1 \times \{0\}$ and $\{0\} \times L_2$, respectively.

A uniformity u on L which makes the lattice operations \vee and \wedge uniformly continuous is called a *lattice uniformity*. u is called *exhaustive* if every monotone sequence is Cauchy in (L, u). We denote by N(u) the closure of the diagonal Δ with respect to u; then N(u) is a congruence relation.

If $\mu: L \to \mathbb{R}$ is an increasing (= isotone) valuation, then $d_{\mu}(x, y) := \mu(x \lor y) - \mu(x \land y)$ defines a semimetric on L which induces an exhaustive lattice uniformity (Birkhoff, 1984, Theorems X.1 and X.4). μ is uniformly continuous with respect to d_{μ} . Moreover, $N(\mu) = N(d_{\mu}$ -uniformity).

2. THE HAHN DECOMPOSITION

The proof of the injectivity of the isomorphism established in Theorem 4.1 is based on the following theorem.

2.1. Theorem. Let L be a complemented lattice, $\mu: L \to \mathbb{R}$ a valuation with $\mu(0) = 0$, and $\hat{L} = L/N(\mu)$.

(a) Then the following conditions are equivalent:

(1) There exists an element $a \in L$ with $\mu(a) = \sup \mu(L)$.

(2) There exists an element $b \in L$ with $\mu(b) = \inf \mu(L)$.

(3) There exist elements $a, b \in L$ such that μ_a and μ_b are valuations, $\mu_a(x) \ge 0$ and $\mu_b(x) \le 0$ for $x \in L$, and $\mu = \mu_a + \mu_b$.

(b) If the conditions of (a) are satisfied, the elements a, b are uniquely determined except for equivalence with respect to $N(\mu)$. Moreover, the equivalence classes \hat{a} and \hat{b} containing a and b, respectively, belong to $C(\hat{L})$ and \hat{b} is the complement of \hat{a} .

(c) If L is σ -complete and $\mu \sigma$ -order continuous, then the conditions of (a) are satisfied.

Proof. Part (c). By Weber (n.d.-b, 1.2.3), any σ -order continuous valuation on a σ -complete lattice attains its supremum.

In the proof of (a), (b) we may assume—passing to the quotient \hat{L} —that $N(\mu) = \Delta$. Then L is relatively complemented, by Proposition 1.1.

(i) μ attains in at most one point its supremum: Let $a_1, a_2 \in L$ with $\mu(a_1) = \mu(a_2) = \sup \mu(L) =: s$ and $a_1 \wedge a_2 \leq x \leq a_1 \vee a_2$. If x' is a relative complement of x in $[a_1 \wedge a_2, a_1 \vee a_2]$, then

$$\mu(x) + \mu(x') = \mu(x \wedge x') + \mu(x \vee x') = \mu(a_1 \wedge a_2) + \mu(a_1 \vee a_2)$$
$$= \mu(a_1) + \mu(a_2) = 2s$$

hence $\mu(x) = s = \mu(a_1)$. It follows that $(a_1, a_2) \in N(\mu) = \Delta$, i.e., $a_1 = a_2$.

(ii) Applying (i) to
$$-\mu$$
, one obtains that μ attains its infimum in at most one point.

(iii) Let *a*, *b* be elements according to (3). Then for any $x \in L$ we get, using Proposition 1.2(a), $\mu(x) = \mu_a(x) + \mu_b(x) \le \mu_a(x) \le \mu_a(1) = \mu(a)$. It follows that $\mu(a) = \sup \mu(L)$. Similarly, $\mu(b) = \inf \mu(L)$. By (i) and (ii), *a* and *b* are uniquely determined.

(iv) Assume that (1) or (2) is satisfied. We may assume that $\mu(a) = \sup \mu(L)$ for some $a \in L$; otherwise replace μ by $-\mu$. Let b be a complement of a. Then $\mu(b) = \inf \mu(L)$: In fact, if $x \in L$ and x' is a complement of x, then

$$\mu(x) = \mu(1) - \mu(x') \ge \mu(1) - \mu(a) = \mu(b)$$

It follows from (ii) that *a* has a unique complement. By Maeda and Maeda (1970), (4.20), an element of a relatively complemented lattice having a unique complement belongs to its center. Hence $a \in C(L)$ and therefore also $b \in C(L)$ (Maeda and Maeda, 1970, (4.14)). By Proposition 1.3, μ_a and μ_b are valuations and $\mu = \mu_a + \mu_b$. Let $x \in L$. If y is a relative complement of $a \wedge x$ in [0, a], then $\mu_a(x) = \mu(a) - \mu(y) \ge 0$ and $\mu_b(x) = \mu(a \vee (b \wedge x)) - \mu(a) \le 0$.

3. EXTENSION OF VALUATIONS

The proof of the surjectivity of the isomorphism established in Theorem 4.1 is based on the following Radon–Nikodym-type theorem. It can be easily deduced from the usual Radon–Nikodym theorem and the representation theorem (Sikorski, 1969, 29.1) for Boolean σ -algebras. But I prefer to give a direct proof repeating the idea for the proof of the Radon–Nikodym theorem.

3.1. Proposition. Let μ and ν be positive σ -additive measures on a σ complete Boolean algebra A with $N(\nu) \subset N(\mu)$. Denote by S the set of
measures of the type $\sum_{i=1}^{n} \alpha_i \nu_{d_i}$, where α_i are positive real numbers and d_i $\in A$. Then there is a sequence (μ_n) in S such that $\mu(x) = \sum_{n=1}^{\infty} \mu_n(x)$ for $x \in A$.

Proof. (i) Passing to the quotient $A/N(\nu)$, we may assume that ν is strictly positive. Let $\epsilon > 0$. We show that there exists a $\mu_0 \in S$ such that $\mu_0(x) \leq S$

 $\mu(x) \leq \mu_0(x) + 2\epsilon$ for $x \in A$. Let $\alpha > 0$; the Hahn decomposition theorem for the measure $\alpha \nu - \mu$ yields an element $x_\alpha \in A$ such that $\mu(x) \leq \alpha \nu(x)$ for $x \in [0, x_\alpha]$ and $\mu(x) \geq \alpha \nu(x)$ for $x \in [0, x'_\alpha]$, where x'_α denotes the complement of x_α . Since ν is strictly positive, $\alpha \leq \beta$ implies $x_\alpha \leq x_\beta$, and $x_n \uparrow 1$ (= unit of A). Choose $m \in \mathbb{N}$ with $\mu(x'_m) \leq \epsilon$ and $\nu(1)/m \leq \epsilon$. Put

$$x_0 := 0, \qquad d_i := x_{i/m} \setminus x_{i-1/m}, \qquad \mu_0 := \sum_{i=1}^{m^2} ((i-1)/m) v_{d_i}$$

For $x \in A$ we have

$$((i-1)/m)\nu(x \wedge d_i) \leq \mu(x \wedge d_i) \leq (i/m)\nu(x \wedge d_i)$$

Summing up these inequalities for $i = 1, ..., m^2$, one obtains

$$\mu_0(x) \leq \mu(x \wedge x_m) \leq \mu_0(x) + (1/m)\nu(x \wedge x_m)$$

It follows that

$$\mu_0(x) \le \mu(x) = \mu(x \land x_m) + \mu(x \lor x_m)$$

$$\le \mu_0(x) + (1/m)\nu(1) + \mu(x'_m) \le \mu_0(x) + 2\epsilon$$

(ii) By (i), we can choose inductively $\mu_n \in S$ with

$$\mu_n(x) \le \mu(x) - \sum_{i=1}^{n-1} \mu_i(x) \le \mu_n(x) + (1/n) \text{ for } n \in \mathbb{N} \text{ and } x \in A$$

Hence $\sum_{n=1}^{\infty} \mu_n(x) = \mu(x)$.

3.2. Corollary. Suppose that C is a σ -complete Boolean subalgebra of C(L) and $a_n \downarrow 0$ in C implies $a_n \downarrow 0$ in L. Let $\mu_0: C \to \mathbb{R}$ be a positive σ -additive measure and $\nu: L \to \mathbb{R}$ a (σ -) order continuous increasing valuation such that $N(\nu \mid C) \subset N(\mu_0)$. Then there exists an increasing (σ -) order continuous valuation $\mu: L \to \mathbb{R}$ extending μ_0 .

Proof. Replacing ν by $\nu - \nu(0)$, we may assume that $\nu(0) = 0$; then $\nu | C$ is a σ -additive measure. Let *S* be the set of functions of the type $\sum_{i=1}^{n} \alpha_i \nu_{d_i}$, where α_i are positive real numbers and $d_i \in C$. All these functions are by Proposition 1.3 increasing (σ -) order continuous valuations on *L*. By Proposition 3.1, there exists a sequence (μ_n) in *S* such that $\sum_{n=1}^{\infty} \mu_n(x) = \mu_0(x)$ for $x \in C$. Denote by $\|\cdot\|_{\infty}$ the sup-norm. Since $\sum_{n=1}^{\infty} \|\mu_n\|_{\infty} = \sum_{n=1}^{\infty} \mu_n(1) = \mu_0(1) < +\infty$, the series $\sum_{n=1}^{\infty} \mu_n$ is uniformly convergent and its value $\mu := \sum_{n=1}^{\infty} \mu_n$ is an increasing (σ -) order continuous valuation extending μ_0 .

3.3. Remark. Corollary 3.2 (as well Proposition 1.3 used in the proof of Corollary 3.2) also holds true if one replaces valuations by states on orthomodular lattices.

4. THE ISOMORPHY BETWEEN bv(L) AND $ocv(C(\tilde{L}))$ FOR L COMPLEMENTED

We denote by bv(L) and ocv(L), respectively, the linear spaces of all bounded and all order continuous valuations $\mu: L \to \mathbb{R}$ with $\mu(0) = 0$. The space bv(L) is a Banach space with respect to the sup-norm $\|\cdot\|_{\infty}$. If L is σ complete, ocv(L) is a closed linear subspace of bv(L) (Weber, n.d.-b, 1.2.3). The spaces bv(L) and ocv(L) are partially ordered linear spaces with respect to the pointwise ordering.

4.1. Theorem. Let L be a complemented complete lattice such that $\bigcap_{\mu \in ocv(L)} N(\mu) = \Delta$.

(a) Then C(L) is a complete sublattice of L; and $x_{\alpha} \downarrow x$ in C(L) implies $x_{\alpha} \downarrow x$ in L (and dually).

(b) $\mu \mapsto \mu | C(L)$ defines an order-preserving isometry from ocv(L) onto ocv(C(L)).

Proof. By Proposition 1.1, L is modular and relatively complemented. Therefore (a) follows from Grätzer (1978), Corollary III.4.11.

By (a), $r(\mu) := \mu | C(L) \in ocv(C(L))$ if $\mu \in ocv(L)$. Obviously, r is linear. Since, by Theorem 2.1, any $\mu \in ocv(L)$ attains its supremum and its infimum on C(L), the map r preserves the sup-norm; in particular, r is injective.

Denote by V the set of all increasing valuations of ocv(L). We now prove with the aid of Corollary 3.2 that any positive $\mu_0 \in ocv(C(L))$ can be extended to a valuation $\mu \in V$; this implies that r is surjective and order preserving. By Corollary 3.2 it is enough to show that $N(\mu_0) \supset N(\nu | C(L))$ for some $\nu \in V$.

Let $v \in V$. Then $\{x \in L: v(x) = 0\} = [0, a(v)]$ for some $a(v) \in L$. The congruence N(v) is standard by Grätzer (1978), Theorem III.3.10, since L is a relatively complemented lattice with 0; hence a(v) is a standard element by Grätzer (1978), Corollary III.3.3. By Grätzer (1978), Exercise 18, p. 144, and Maeda and Maeda (1970), (4.13), in a modular complemented lattice the center consists precisely of all standard elements. Hence $a(v) \in C(L)$ and a(v) has, by Maeda and Maeda (1970), Remark (4.14), a unique complement s(v) which also belongs to C(L).

We show that $\sup_{\nu \in \nu} s(\nu) = 1$: For $s := \sup_{\mu \in \nu} s(\mu)$ and $\nu \in V$ we have $(s, 1) \in N(\nu)$, since $(s(\nu), 1) \in N(\nu)$. It follows with the aid of the Hahn decomposition Theorem 2.1 that $(s, 1) \in \bigcap_{\nu \in \nu} N(\nu) = \bigcap_{\nu \in oc\nu(L)} N(\nu) = \Delta$, hence s = 1.

Let $\mu_0 \in ocv(C(L))$ be a positive measure, $a \in C(L)$ with $\{x \in C(L): \mu_0(x) = 0\} = [0, a] \cap C(L)$ and s the complement of a in C(L). Since the Boolean algebra $[0, s] \cap C(L)$ satisfies the countable chain condition and $\sup_{v \in v} s(v) = 1$, there is a sequence (v_n) in V with $s \leq \sup_{n \in \mathbb{N}} s(v_n)$ and

therefore a sequence (a_n) of pairwise disjoint elements of C(L) with $s = \sup_{n \in \mathbb{N}} a_n$ and $a_r \leq s(\nu_n)$ for $n \in \mathbb{N}$. Choose $\epsilon_n > 0$ with $\epsilon_n \nu_n(1) \leq 2^{-n}$; put $\lambda_n(x) := \nu_n(x \wedge a_n)$ for $x \in L$. Then $\nu := \sum_{n=1}^{\infty} \epsilon_n \lambda_n \in V$ and $s(\nu) = s$, i.e., $N(\nu | C(L)) = N(\mu_0)$.

Our main theorem, Theorem 4.3, is a consequence of the algebraic result, Theorem 4.1, and the following topological result.

4.2. Proposition. Let w be a Hausdorff lattice uniformity on L and (\tilde{L}, \tilde{w}) its uniform completion.

(a) Then \tilde{L} becomes a lattice by continuously extending the lattice operations from L to \tilde{L} .

(b) If w is exhaustive, then \tilde{w} is order continuous and (\tilde{L}, \leq) is a complete lattice.

(c) If w is exhaustive and L a complemented modular lattice, then also \tilde{L} is complemented and modular.

For (a), (b) see Kiseleva (1967) or Weber (1991), 1.3.1 and 6.15. (c) is proved in Weber (n.d.-c).

We use in the following result the fact that for any lattice uniformity w on L the quotient uniformity \hat{w} of w on L/N(w) is a Hausdorff lattice uniformity (Weber, 1991, 1.2.4).

4.3. Theorem. Let L be a complemented lattice and w the (exhaustive) lattice uniformity generated by the family of all semimetrics d_{μ} defined by increasing valuations $\mu: L \to \mathbb{R}$. Let \hat{w} be the quotient uniformity of w on $\hat{L} := L/N(w)$ and (\tilde{L}, \tilde{w}) the completion of (\hat{L}, \hat{w}) . Then the spaces bv(L), $bv(\hat{L})$, $ocv(\tilde{L})$, $ocv(C(\tilde{L}))$ are isometric Banach spaces and isomorphic as Riesz spaces. The natural order-preserving linear isometries are defined as follows:

 $bv(L) \ni \mu \mapsto \hat{\mu} \in bv(\hat{L})$, where $\hat{\mu}(\hat{x}) = \mu(x)$ and $x \in \hat{x} \in \hat{L}$ $ocv(\tilde{L}) \ni \tilde{\mu} \mapsto \tilde{\mu} | \hat{L} \in bv(\hat{L})$ $ocv(\tilde{L}) \ni \tilde{\mu} \mapsto \tilde{\mu} | C(\tilde{L}) \in ocv(C(\tilde{L}))$

Proof. Obviously, the first map $(\mu \mapsto \hat{\mu})$ is an order-preserving linear isometry. From the facts that any $\tilde{\mu} \in ocv(\tilde{L})$ is bounded, by Weber (n.d.-b), 1.2.3 [or by Theorem 2.1, Proposition 4.2(c)], and that the continuous extension of any $\hat{\mu} \in bv(\hat{L})$ on (\tilde{L}, \tilde{w}) belongs to $ocv(\tilde{L})$, since \tilde{w} is order continuous by Proposition 4.2(b), it easily follows that the second map $(\tilde{\mu} \mapsto \tilde{\mu} \mid L)$ is an order-preserving linear isometry. The third map $(\tilde{\mu} \mapsto \tilde{\mu} \mid C(\tilde{L}))$ is by Theorem 4.1 an order-preserving linear isometry, since \tilde{L} is complete by Proposition 4.2(b) and complemented by Proposition 4.2(c) and Proposition 1.1.

The space $ocv(C(\tilde{L}))$ coincides with the space of all real-valued totally additive measures on $C(\tilde{L})$.

Avallone, A., and Weber, H. (n.d.). Lattice uniformities generated by filters, preprint.

Birkhoff, G. (1984). Lattice Theory, American Mathematical Society, Providence, Rhode Island.

- Fleischer, I., and Traynor, T. (1982). Group-valued modular functions, Algebra Universalis, 14, 287-291.
- Grätzer, G. (1978). General Lattice Theory, Academic Press, New York.
- Kiseleva, T. G. (1967). Partially ordered sets endowed with a uniform structure, Vestnik Leningrad University, 22(13), 51-57 [in Russian].

Maeda, F., and Maeda, S. (1970). Theory of Symmetric Lattices, Springer-Verlag, Berlin.

Sikorski, R. (1969). Boolean Algebras, Springer-Verlag, Berlin.

- Weber, H. (1991). Uniform lattices I: A generalization of topological Riesz spaces and topological Boolean rings, Annali di Matematica Pura e Applicata, 160, 347–370.
- Weber, H. (1993). Uniform lattices II: Order continuity and exhaustivity, Annali di Matematica Pura e Applicata, 165, 133–158.
- Weber, H. (n.d.-a). Lattice uniformities and modular functions on orthomodular lattices, *Order* (to appear).

Weber, H. (n.d.-b). On modular functions, Funct. et Approx. (to appear).

Weber, H. (n.d.-c). Independent lattice uniformities, manuscript.