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Valuations on Complemented Lattices 

H a n s  W e b e r  1 
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It is proved that the space of  all bounded real-valued valuations ix with Ix(O) = 0 
on a complemented lattice is isomorphic to the space of all real-valued totally 
additive measures on a suitable complete Boolean algebra. 

0. I N T R O D U C T I O N  

In this paper we establish a natural isomorphism between the space of 
all bounded real-valued valuations tx with Ix(0) = 0 on a complemented 
lattice L and the space of all real-valued totally additive measures on C(L); 
here s is a suitable completion of a quotient of L and C(L) the center of s 
see Theorem 4.3. In particular, this answers in the affirmative the question 
of P. Pt~k of whether the space of all positive valuations Ix with Ix(0) = 
0 on an orthomodular lattice is isomorphic to a space of measures on a 
Boolean algebra. 

A result--similar to that of this paper for valuations--was obtained in 
Weber (n.d.-a) for exhaustive lattice uniformities on orthomodular lattices: 
The lattice of all exhaustive lattice uniformities on L is isomorphic to the 
space of all order continuous FN-topologies on C(L). The analogous result 
can be derived from Avallone and Weber (n.d.) for a complemented modular 
lattice L. The proof of our main result (Theorem 4.3) is based on the idea 
which underlies the mentioned theorem from Weber (n.d.-a) for lattice unifor- 
mities, the Hahn-decomposition theorem (Section 2), and an extension theo- 
rem (Section 3) for valuations. 

1. P R E L I M I N A R I E S  

Throughout let L be a lattice with smallest element 0 and greatest 
element 1. 
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We denote by A := {(x, x): x ~ L} the diagonal of L X L and by N 
and R the sets of natural and real numbers, respectively. 

A valuation on L is a function Ix: L --~ R satisfying 

Ix (xvy)  + F ( x A y ) =  Ix(x)+ Ix(y) for all x , y  E L 

Ix is called order continuous (or ~r-order continuous) if (ix(xv)) converges to 
Ix(x) whenever (x~) is, respectively, a monotone net (or a monotone sequence) 
order-converging to an element x ~ L. It follows, e.g., from Fleischer and 
Traynor (1982), Theorem 3, that 

N(Ix) : = { (x, y) E L2: Ix is constant on [x A y, X V y] } 

is a congruence relation for any valuation Ix: L --) R. 

1.1. Proposition. Let (Ix~)~A be a family of valuations on L and N = 
f-I,~A N(Ix~). Then the quotient/2 := L/N is a modular lattice. Moreover,/2 
is relatively complemented if L is complemented. 

Proof/2 is modular by Fleischer and Traynor (1982), Theorem 1, applied 
to the function m: L --> R a defined by m(x) := (ix~(x))~a. [Another proof 
of the modularity of/2 can be obtained by a modification of the second proof 
of Birkhoff (1984), Theorem X.2, that is near at hand.] Obviously, /2 is 
complemented. But any complemented modular lattice is relatively comple- 
mented by Birkhoff (1984), Theorem I. 14. 

1.2. Proposition. Let L be complemented and Ix: L --) R a valuation 
with Ix(0) = 0. 

(a) If Ix(x) >- 0 for all x ~ L, then Ix is increasing, hence bounded. 
(b) If Ix is bounded, then Ix is of bounded variation, hence the difference 

of two increasing valuations. 

Proof For relative complemented lattices with 0 and 1, the assertion is 
formulated in Exercise 5 on p. 241 of Birkhoff (1984). One can reduce the 
assertion to the relative complemented case passing to the quotient /2 := 
L/N(Ix) defining on/2  a valuation g by 1~(2) = Ix(x) for x e 2 e /2. The 
quotient/2 is relatively complemented, by Proposition 1. l. 

The center C(L) of L is the set of elements of L which have one 
component I i and the other 0z, under some direct factorization L -~ L~ • L 2 

(Birkhoff, 1984, p. 67; Maeda and Maeda, 1970, p. 18). C(L) is a Boolean 
sublattice of L (Maeda and Maeda, 1970, (4.15)). 

For ix: L --) R and a ~ L, we define Ixa: L ~ R by Ixa(x) := Ix(a A X). 

1.3. Proposition. Let Ix: L ---) R be a valuation with Ix(O) = O, a ~ C(L), 
and a '  its unique complement (Maeda and Maeda, 1970, (4.14)). Then Ix,, 
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ixa, are valuations and Ix = Ix~ + Ixo'; moreover, ~ and IX~, are, respectively, 
bounded or or-order continuous or order continuous if IX is. 

Proof We may assume that L = L1 X L2,  a = (1, 0), a '  = (0, 1). The 
assertion follows from the fact that then P-a = ~z 0 p~ and Ixd = Ix �9 P2, 
wherepl  andp2 denote the projections from LI • L2 onto Ll X {0} and {0} 
• L2, respectively. 

A uniformity u on L which makes the lattice operations v and A uniformly 
continuous is called a lattice uniformity, u is called exhaustive if every 
monotone sequence is Cauchy in (L, u). We denote by N(u) the closure of  
the diagonal A with respect to u; then N(u) is a congruence relation. 

If  p,: L ---> R is an increasing (=  isotone) valuation, then d~(x, y) := 
tx(x v y) - Ix(x/x y) defines a semimetric on L which induces an exhaustive 
lattice uniformity (Birkhoff, 1984, Theorems X.1 and X.4). po is uniformly 
continuous with respect to d w Moreover, N(p,) = N(d~-uniformity). 

2. T H E  H A H N  D E C O M P O S I T I O N  

The proof of  the injectivity of the isomorphism established in Theorem 
4.1 is based on the following theorem. 

2.1. Theorem. Let L be a complemented lattice, ix: L ~ R a valuation 
with IX(0) = 0, a n d / ,  = L/N(IX). 

(a) Then the following conditions are equivalent: 
(1) There exists an element a E L with Ix(a) = sup Ix(L). 
(2) There exists an element b ~ L with Ix(b) = inf Ix(L). 
(3) There exist elements a, b ~ L such that Ixa and Ixb are valuations, 

Ixa(x) >-- 0 and ixb(x) -< 0 for x ~ L, and Ix = ixa + ix b. 
(b) If  the conditions of (a) are satisfied, the elements a, b are uniquely 

determined except for equivalence with respect to N(Ix). Moreover, the equiva- 
lence classes fi and b containing a and b, respectively, belong to C(/,) and/~ 
is the complement of ft. 

(c) If  L is or-complete and Ix or-order continuous, then the conditions of  
(a) are satisfied. 

Proof Part (c). By Weber (n.d.-b, 1.2.3), any or-order continuous valua- 
tion on a or-complete lattice attains its supremum. 

In the proof of  (a), (b) we may assume--pass ing  to the quot ien t / , - - tha t  
N(IX) = A. Then L is relatively complemented, by Proposition 1.1. 
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(i) p~ attains in at most  one point its supremum: Let  al ,  a2 ~ L with 
Ix(aO = ~(a2) = sup ~(L) = :  s and a~/~ a2 ----- x ----- al v a2. I f x '  is a relative 
complement  of  x in [a~ A a2, al v a2] , then 

/,~(X) + ~ ( X ' )  : ~(X A X')  + IJ,(X V X')  = ~ ( a  1 A a2) + ~ ( a  1 v a2) 

= ~L(al) -[" ~.L(a2) = 2S 

hence ~(x) = s = p,(al). It follows that (al, a2)  ~ N([~)  : A, i.e., al = a2. 

(ii) Applying (i) to - t~ ,  one obtains that ~ attains its in f imum in at 
most  one point. 

(iii) Let a, b be elements  according to (3). Then for any x ~ L we get, 
using Proposit ion 1.2(a), I~(x) = ~a(x) + ~b(X) ----- I~a(X) ---< I~(1)  = ~(a).  It 
follows that I~(a) = sup I~(L). Similarly, i~(b) = inf I~(L). By  (i) and (ii), a 
and b are uniquely determined. 

(iv) Assume that (1) or (2) is satisfied. We may  assume that I~(a) = 
sup I~(L) for some a e L; otherwise replace I~ by - ~. Let  b be a complement  
of  a. Then i~(b) = inf ~(L): In fact, i f x  ~ L and x '  is a complement  o f  x, then 

~ ( x )  = ~ ( 1 )  - ~ ( x ' )  -> ~ ( l )  - ~ ( a )  = ~ ( b )  

It follows f rom (ii) that a has a unique complement .  By Maeda  and 
Maeda  (1970), (4.20), an element  of  a relatively complemen ted  lattice having 
a unique complement  belongs to its center. Hence  a e C(L) and therefore 
also b e C(L) (Maeda and Maeda,  1970, (4.14)). By Proposi t ion 1.3, I~a and 
I~b are valuations and I~ = I~  + I-%- Let x e L. I f  y is a relative complement  
of  a ^ x in [0, a], then I~,,(x) = I~(a) - I~(y) --> 0 and ~b(X) = ~ ( a v  (b /x  
x)) - I.z(a) <-- 0. 

3. E X T E N S I O N  O F  V A L U A T I O N S  

The proof  of  the surjectivity of  the i somorphism established in Theorem 
4.1 is based on the following R a d o n - N i k o d y m - t y p e  theorem. It can be easily 
deduced f rom the usual R a d o n - N i k o d y m  theorem and the representation 
theorem (Sikorski, 1969, 29.1) for Boolean o'-algebras. But I prefer  to give 
a direct p roof  repeating the idea for the proof  of  the R a d o n - N i k o d y m  theorem. 

3.1. Proposition. Let tx and v be positive o--additive measures  on a o-  
complete  Boolean algebra A with N(v) C N(~).  Denote  by S the set o f  
measures  of  the type E?:~ oLivai, where ~i are posit ive real numbers  and di 
e A. Then there is a sequence (~n) in S such that ~(x) = E~=I ~ ( x )  for x 
c A .  

Proof (i) Passing to the quotientA/N(v), we may  assume that v is strictly 
positive. Let e > 0. We show that there exists a Ix0 E S such that Ix0(x) --< 
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~(x) - Ixo(X) + 2e for x e A. Let  c~ > 0; the Hahn decomposi t ion  theorem 
for the measure  o~v - IX yields an element  x~ E A such that Ix(x) <- av(x)  
for x ~ [0, x,d and Ix(x) >- ezv(x) for x ~ [0, x~], where x" denotes the 
complemen t  of  x~. Since v is strictly positive, ot -< [3 implies x~ -< x~, and 
x,  1" 1 ( =  unit o f  A). Choose m E N with Ix(x',,) --< e and v(1)/m <- e. Put 

m 2 

x0 := 0, di :=  Xi/,,\Xi-l/m, ~0 :=  ~ ((i -- 1)/m)vdi 
i = 1  

For x E A we have 

((i - 1)/m)v(x A di) <-- IX(x A di) <-- (i /m)v(x A di) 

Summing  up these inequalities for i = 1 . . . . .  m 2, one obtains 

Ixo(X) <- Ix(x ^ Xm) <-- IXo(X) + ( l /m)v(x  A Xm) 

It fol lows that 

Ixo(X) <- Ix(x) = Ix(x ^ xm) + IX(X\Xm) 

<-- Ixo(X) + (1/m)v(1) + Ix(x') <-- Ixo(X) + 2e 

(ii) By (i), we can choose inductively Ix, e S with 

n-- I  

Ix,(x)<- I X ( x ) -  ~ Ixi(x)<- Ix,(x) + ( I /n)  for n e N a n d x  e a  
i = 1  

Hence  ~ - 1  Ix,(x) = Ix(x). 

3.2. Corollary. Suppose that C is a ~-comple te  Boolean subalgebra  of  
C(L) and a ,  $ 0 in C implies a ,  $ 0 in L. Let Ixo: C ---> R be a posit ive tr- 
additive measure  and v: L ---> R a (~r-) order continuous increasing valuation 
such that N ( v l C )  C N(IXo). Then there exists an increasing (or-) order continu- 
ous valuation IX: L ~ R extending Ix0. 

Proof. Replacing v by v - v(0), we may  assume that v(0) = 0; then 
vl C is a or-additive measure.  Let  S be the set of  functions of  the type E~'=~ 
e~vd~, where oq are positive real numbers  and d~ e C. All these functions are 
by Proposit ion 1.3 increasing (or-) order continuous valuations on L. By 
Proposi t ion 3.1, there exists a sequence (Ix,) in S such that E,%1 Ix,(x) = 
Ix0(x) for x e C. Denote by II" I1~o the sup-norm. Since E~= 1 [[ Ix, [l~ = E~= 1 
Ix,(1) = Ix0(1) < +0% the series E~=~ IX, is uniformly convergent  and its 
value IX :=  E,~176 IX, is an increasing (~r-) order continuous valuation 
extending Ix0. 

3.3. Remark. Corollary 3.2 (as well  Proposi t ion 1.3 used in the proof  
of  Corol lary 3.2) also holds true if one replaces valuations by states on 
or thomodular  lattices. 
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4. T H E  I S O M O R P H Y  B E T W E E N  bv(L) A N D  ocv(C(L)) F O R  L 
C O M P L E M E N T E D  

We denote by bv(L) and ocv(L), respectively, the linear spaces of all 
bounded and all order continuous valuations IX: L ~ R with Ix(0) = 0. The 
space bv(L) is a Banach space with respect to the sup-norm H']]=. If L is ~y- 
complete, ocv(L) is a closed linear subspace of bv(L) (Weber, n.d.-b, 1.2.3). 
The spaces bv(L) and ocv(L) are partially ordered linear spaces with respect 
to the pointwise ordering. 

4.1. Theorem. Let L be a complemented complete lattice such that 
A~ocv(L) N(Ix) = A. 

(a) Then C(L) is a complete sublattice of L; and x~ $ x in C(L) implies 
x~ ~, x in L (and dually). 

(b) IX ~ Ix l C(L) defines an order-preserving isometry from ocv(L) 
onto ocv(C(L)). 

Proof By Proposition 1.1, L is modular and relatively complemented. 
Therefore (a) follows from Gr~tzer (1978), Corollary III.4.11. 

By (a), r(ix) := IX IC(L) ~ ocv(C(L)) if IX ~ ocv(L). Obviously, r is 
linear. Since, by Theorem 2.1, any ~ ~ ocv(L) attains its supremum and its 
infimum on C(L), the map r preserves the sup-norm; in particular, r is injective. 

Denote by V the set of all increasing valuations of ocv(L). We now 
prove with the aid of Corollary 3.2 that any positive Ixo E ocv(C(L)) can be 
extended to a valuation IX ~ V; this implies that r is surjective and order 
preserving. By Corollary 3.2 it is enough to show that N(lx0) D N(vIC(L)) 
for some v e V. 

Let v ~ V. Then {x ~ L: v(x) = 0} = [0, a(v)] for some a(v) ~ L. 
The congruence N(v) is standard by Gr~tzer (1978), Theorem III.3.10, since 
L is a relatively complemented lattice with 0; hence a(v) is a standard element 
by Gr~itzer (1978), Corollary III.3.3. By Grfitzer (1978), Exercise 18, p. 144, 
and Maeda and Maeda (1970), (4.13), in a modular complemented lattice 
the center consists precisely of all standard elements. Hence a(v) E C(L) 
and a(v) has, by Maeda and Maeda (1970), Remark (4.14), a unique comple- 
ment s(v) which also belongs to C(L). 

We show that supper s(v) = 1: For s "= supply s(ix) and v s V we 
have (s, 1) ~ N(v), since (s(v), 1) ~ N(v). It follows with the aid of the 
Hahn decomposition Theorem 2.1 that (s, 1) ~ N.~v N(v) = fq~oc~(L) N(v) 
= A, hence s = 1. 

Let Ixo E ocv(C(L)) be a positive measure, a E C(L) with {x E C(L): 
i~o(X) = 0} = [0, a] N C(L) and s the complement of a in C(L). Since the 
Boolean algebra [0, s] n C(L) satisfies the countable chain condition and 
s u p ~  s(v) = 1, there is a sequence (vn) in V with s <-- sup.~N s(v.) and 
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therefore a sequence (an) of pairwise disjoint elements of C(L) with s = 
supn~N an and a, <- s(vn) for n ~ N. Choose en > 0 with envn(1) ----- 2-n; put 
hn(x) : = vn(x ^ an) for x ~ L. Then v := E~= l enkn ~ V and s(v) = s, i.e., 
N(vI C(L)) = N(IXo). 

Our main theorem, Theorem 4.3, is a consequence of the algebraic result, 
Theorem 4.1, and the following topological result. 

4.2. Proposition. Let w be a Hausdorff lattice uniformity on L and 
(/2, ~) its uniform completion. 

(a) Then /2 becomes a lattice by continuously extending the lattice 
operations from L to/2. 

(b) If w is exhaustive, then ~ is order continuous and (/2, --<) is a 
complete lattice. 

(c) If w is exhaustive and L a complemented modular lattice, then also 
/2 is complemented and modular. 

For (a), (b) see Kiseleva (1967) or Weber (1991), 1.3.1 and 6.15. (c) is 
proved in Weber (n.d.-c). 

We use in the following result the fact that for any lattice uniformity w 
on L the quotient uniformity ~ ofw on L/N(w) is a Hausdorff lattice uniformity 
(Weber, 1991, 1.2.4). 

4.3. Theorem. Let L be a complemented lattice and w the (exhaustive) 
lattice uniformity generated by the family of all semimetrics d~ defined by 
increasing valuations ix: L ~ R. Let u5 be the quotient uniformity of w on 
/2 := L/N(w) and (/2, ~) the completion of (/2, ~). Then the spaces bv(L), 
bv(/2), ocv(/2), ocv(C(/2)) are isometric Banach spaces and isomorphic as Riesz 
spaces. The natural order-preserving linear isometrics are defined as follows: 

bv(L) ~ tx ~ O~ ~ bv(L), where ~(2) = ix(x) and x ~ 2 E L 
ocv(/2) ~ g ~ g l / 2  ~ bv(L)  
ocv(/2) ~ fx ~ ftt C(/2) e ocv(C(/2)) 

Proof Obviously, the first map (Ix ~ ~) is an order-preserving linear 
isometry. From the facts that any ~ E ocv(/2) is bounded, by Weber 
(n.d.-b), 1.2.3 [or by Theorem 2.1, Proposition 4.2(c)], and that the continuous 
extension of any g ~ bv(/2) on (/2, v~) belongs to ocv(/2), since ~ is order 
continuous by Proposition 4.2(b), it easily follows that the second map (1~ 

O~ I L) is an order-preserving linear isometry. The third map (9~ ~ ~ I C(/2)) 
is by Theorem 4.1 an order-preserving linear isometry, since/2 is complete 
by Proposition 4.2(b) and complemented by Proposition 4.2(c) and Proposi- 
tion 1.1. 

The space ocv(C(/2)) coincides with the space of all real-valued totally 
additive measures on C(/2). 
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